Luminosity distance dispersion in Swiss-cheese cosmology as a function of the hole size distribution

Tong Cheunchitra, Andrew Melatos University of Melbourne/OzGrav

ACGRG 12

Hobart, 2023

A Bird's Eye View of Cosmology

- Cosmology is an observational science!
- Goal:
 - (i) Infer the components of the universe
 - (ii) Study how those components evolve
- Usually, one does this by comparing observations to a model, constructed from theory.
 - A canonical example: luminosity distance-redshift relation

Credit: Huntington Library

Luminosity Distance and Redshift

Luminosity distance (D_L)

Distances inferred from apparent brightness of sources with known luminosity (standard candles)

Redshift (z)

- The fractional change of the photon's wavelength
- Only talking about cosmological redshift

$D_L - z$ Relation

- We observe these $(D_L, z) \rightarrow$
- Then we fit the theory $D_L(z|\theta)$
 - Infer $\theta = \{\Omega_{M}, H_{0}\}$
- Observation: Supernova Type Ia
- Theory: Friedmann-Robertson-Walker Metric

Credit: Riess et al. (1998)

Friedmann-Robertson-Walker (FRW) Metric

Isotropy: the universe looks

the same in every direction

$$ds^{2} = -dt^{2} + a(t)^{2} \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} d\Omega \right]$$

From this, we can derive $D_L - z$ relation

Homogeneity: the universe looks the same at every location

Inhomogeneity

Galaxy surveys & simulations observe cosmic voids

Credit: SDSS

- Metric deviates from FRW at \leq homogeneity scale.
- (D_L, z) varies from one line of sight to the next, depending on inhomogeneities it passes through.
- D_L and z are "fuzzy".
 - Is this enough to solve various problems in cosmology? Dark energy? H_0 tension?
- How do we investigate this?
 - Surveys and simulations are limited by resolution

Swiss-cheese Models

Homogeneous background w/ spherical voids

• Spherical symmetry → exact solution of GR

• Past works: $\geq 10 \text{ Mpc}$ holes

- This work:
 - (Hypothetical) small holes
 - power law hole size distribution

Method

- 1. Construct a Swiss-cheese universe.
- 2. Propagate light rays through the holes.
- 3. Calculate D_L and z from properties of light.

How to make Swiss-cheese

"Cheese": FRW metric

$$ds^{2} = -dt^{2} + a(t)^{2} \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} d\Omega \right]$$

"Hole": Lemaitre-Tolman-Bondi (LTB) metric

$$ds^{2} = -dt^{2} + a(t,r)^{2} \left\{ \left[1 + \frac{ra'(t,r)}{a(t,r)} \right]^{2} \frac{dr^{2}}{1 - k(r)r^{2}} + r^{2}d\Omega \right\}$$

Constraints: avoid...

- Density divergence/shell crossings
- Blueshift divergence

Junction Conditions

Light Propagation

Geodesic Equations

e.g.
$$\frac{dp^{t}(s)}{ds} = -\frac{(\dot{a}+r\dot{a}')(a+ra')}{1-kr^{2}}(p^{r})^{2} - \frac{\dot{a}L^{2}}{r^{2}a^{3}}$$

Optical Equations

e.g.
$$\frac{d\theta}{ds} = -\frac{1}{2}\theta^2 - 2(\sigma_+^2 + \sigma_-^2) + 2\omega^2 + R_{\alpha\beta}p^{\alpha}p^{\beta}$$

- Relates light properties at source & obs.
- Integrate these ODEs numerically
- Calculate observables (D_L, z)

Hole size distributions

• Light beam encounters holes successively

- Sample hole size from power law PDF
 - Minimum hole size R_{min}
 - \circ Logarithmic slope γ

$D_L - z$ dispersion

• Qualitatively, (D_L, z) lie around the "cheese FRW" $D_L(z)$.

- Dispersion growing with z
 - How do we quantify this?
 - Subtracting FRW $D_L(z)$ might contaminate the dispersion

Measuring σ_{D_L}

- Generate a sample of 50 (D_L, z) around z_{target}
- Kernel density estimate $p(D_L, z)$
- Calculate width of $p(D_L, z_{\text{target}})$

Do this for many Swiss-cheese parameters

Parameter space

- Minimum size: $0.1 \text{ Mpc} < R_{\min} < 10 \text{ Mpc}$
- Logarithmic slope: $1.1 < \gamma < 3.1$

Larger <u>minimum siz</u>e

Steeper Hole Distribution

D_L dispersion

- σ_{D_L} decrease towards lower right
- Large γ , small $R_{\min} \rightarrow \text{Largest}$ fraction of small holes

Nonlinear least-squares gives

$$\sigma_{D_L} = (2.19 \text{ Mpc}) z^{2.25} \left(\frac{R_{\text{min}}}{24 \text{ Mpc}}\right)^{0.157(\gamma - 1.16)}$$

Conclusion & Outlook

- (D_L, z) varies from one line of sight to another because it depends on the inhomogeneous metric in between source and observer
- Using a Swiss-cheese model of cosmology, we estimate D_L dispersion

$$\sigma_{D_L} \sim (2.19 \text{ Mpc}) z^{2.25} \left(\frac{R_{\text{min}}}{24 \text{ Mpc}}\right)^{0.157(\gamma - 1.16)}$$

- Outlook
 - There are other sources of dispersion: void shape/orientation, profile, etc.
 - Understanding this is important for the era of precision cosmology!
- Paper on the verge of submission stay tuned!