

Testing general relativity with black hole ringdown

Neil Lu (ANU) - ASGRG30

Australian / National University

Outline

- Background and motivation
- Current status of ringdown analysis
- Future prospects

Outline

- Background and motivation
- Current status of ringdown analysis
- Future prospects

Binary black hole coalescences

 Coalescence of binary black hole systems emit gravitational waves detectable on Earth

 The post-merger phase of a binary black hole signal is known as ringdown

Abbott+ PRL, 2016

- The post-merger phase of a binary black hole signal is known as ringdown
- In general relativity (GR), the ringdown signal consists of a superposition of quasinormal modes (QNMs)

Abbott+ PRL, 2016

- The post-merger phase of a binary black hole signal is known as ringdown
- In general relativity (GR), the ringdown signal consists of a superposition of quasinormal modes (QNMs)
- Each are exponentially damped sinusoids – frequency and damping time

Abbott+ PRL, 2016

- The post-merger phase of a binary black hole signal is known as ringdown
- In general relativity (GR), the ringdown signal consists of a superposition of quasinormal modes (QNMs)
- Each are exponentially damped sinusoids – frequency and damping time
- Labelled by (Imn); angular numbers and overtone number. E.g. 220

Abbott+ PRL, 2016

 The frequency and damping times of the QNMs depend only on the mass and spin of the remnant black hole – no hair theorem

Neil Lu - ASGRG30

- The frequency and damping times of the QNMs depend only on the mass and spin of the remnant black hole – no hair theorem
- Can use the ringdown signal to infer the mass and spin of the remnant black hole

Testing GR in the strong-field

Credit: Carl Knox

- Testing GR in the strong-field
 - Beyond GR theories modify the ringdown signal
 [1, 2]
 - Black hole spectroscopy: measuring multiple ringdown modes simultaneously [3, 4]
 - Consistency of ringdown with the full waveform

Credit: Carl Knox

[1]: Glampedakis+ PRD [4]: Baibhav+ PRD 2023 2017

[2]: Evstafyeva+ PRD

[3]: Dryer+ CQG 2003

- Testing GR in the strong-field
 - Beyond GR theories modify the ringdown signal
 [1, 2]
 - Black hole spectroscopy: measuring multiple ringdown modes simultaneously [3, 4]
 - Consistency of ringdown with the full waveform
- Testing the nature of the remnant

Credit: Carl Knox

[1]: Glampedakis+ PRD [4]: Baibhav+ PRD 2023 2017

[2]: Evstafyeva+ PRD 2023 [3]: Dryer+ CQG 2003

Neil Lu - ASGRG30

- Testing GR in the strong-field
 - Beyond GR theories modify the ringdown signal [1, 2]
 - Black hole spectroscopy: measuring multiple ringdown modes simultaneously [3, 4]
 - Consistency of ringdown with the full waveform
- Testing the nature of the remnant
 - Exotic compact objects would modify the ringdown spectrum – e.g. gravastars, firewalls, fuzzballs [5, 6]

Credit: Carl Knox

[4]: Baibhav+ PRD 2023 [1]: Glampedakis+ PRD 2017

[3]: Dryer+ CQG 2003

[2]: Evstafyeva+ PRD

[5]:Cardoso+ PRL 2016

[6]: Maggio+ PRD 2020

Outline

- Background and motivation
- Current status of ringdown analysis
- Future prospects

 Numerical relativity simulations are important tools for studying ringdown

Credit: Buonanno, Ossokine

- Numerical relativity simulations are important tools for studying ringdown
- Use it to understand how initial conditions of the binary affect the ringdown signal [1]
 - Precession
 - Eccentricity
 - Mass ratio

Credit: Buonanno, Ossokine

- Numerical relativity simulations are important tools for studying ringdown
- Use it to understand how initial conditions of the binary affect the ringdown signal [1]
 - Precession
 - Eccentricity
 - Mass ratio
- Despite having high SNRs, their mode contents are still **strongly debated**
 - GW150914-like waveform [2, 3, 4]

Credit: Buonanno, Ossokine

^{[2]:} Giesler+ PRX 2019

^{[3]:} Ma+ PRD 2023

^{[4]:} Clarke+ PRD 2024

- Need to extract modes from data NR or real GW observations
- This is a statistically and computationally difficult process

Neil Lu - ASGRG30

Isi+ arXiv 2019

Carullo+ PRD 2019

[4]: Ma+ PRD 2022

- Need to extract modes from data NR or real GW observations
- This is a statistically and computationally difficult process
- Many different analysis techniques exist
 - PyRing [1]
 - Gating and in-painting [2]
 - Frequency domain [3]
 - ONM rational filter [4]
 - Many others

 The QNM rational filter works by filtering out a specific mode to identify subdominant modes or leave only residual noise

GW150914

- Confident detection of fundamental mode (220)
- Disagreements about overtone (221) [1,

Credit: LIGO/Caltech/MIT/R. Hurt (IPAC).

[1]: Isi+ PRL 2019 [2]: Cotesta+ PRL

2022

[3]: Ma+ PRL 2023

GW150914

- Confident detection of fundamental
 - Disagreements about overtone (221) [1,
- GW190521
 - Marginal subdominant mode
 - Which one? [4, 5]

mode (220)

GW150914

85 M_o
142 M_o
GW190521

Credit: LIGO/Caltech/MIT/R. Hurt (IPAC).

2022

[3]: Ma+ PRL 2023

GW150914

- Confident detection of fundamental mode (220)
- Disagreements about overtone (221) [1, 2, 3]
- GW190521
 - Marginal subdominant mode
 - Which one? [4, 5]
- Ongoing work
 - 04 analysis
 - Statistical understanding [6, 7, 8, 9]

Credit: LIGO/Caltech/MIT/R. Hurt (IPAC).

2023 [6]: May+ arXiv 2024 [9]: Lu+, in prep [3]: Ma+ PRL 2023 [7]: Baibhav+ PRD 2023

[8]: Nee+ PRD

Neil Lu - ASGRG30

Outline

- Background
- Motivation
- Present status of ringdown
- Future prospects

Neil Lu - ASGRG30

Future detectors

Neil Lu - ASGRG30

"Golden" events

Neil Lu - ASGRG30

GWOSC data release

14

"Golden" events

- ET or CE will see events with SNR ≈ 200 [1]
- Confident detection of multiple ringdown modes [2]
- Non-linear modes start to become relevant [3, 4]

[1]: lacovelli+ ApJ 2022

[3]: Cheung+ PRL 2022

[4] Mitman+ PRL 2022

"Golden" events

- ET or CE will see events with SNR ≈ 200 [1]
- Confident detection of multiple ringdown modes [2]
- Non-linear modes start to become relevant [3, 4]
- Enables precision tests of GR and probing the nature of black holes

[1]: lacovelli+ ApJ 2022

[3]: Cheung+ PRL 2022

Evans+ CE horizon study, 2021 [4] Mitman+ PRL 2022

 Ground-based 3G detectors will observe ~300 events/year [1]

Credit: Cosmic Explorer Horizon Study

[1]: Bhagwat+ PRD, 2016

- Ground-based 3G detectors will observe ~300 events/year [1]
- Detection of unusual / exotic
 systems e.g. eccentric binaries

Credit: Cosmic Explorer Horizon Study

[1]: Bhagwat+ PRD,2016[2]: Saini MNRAS 2024

- Ground-based 3G detectors will observe ~300 events/year [1]
- Detection of unusual / exotic
 systems e.g. eccentric binaries
- Combine events to increase the SNR of subdominant modes [3]

Credit: Cosmic Explorer Horizon Study

- Ground-based 3G detectors will observe ~300 events/year [1]
- Detection of unusual / exotic
 systems e.g. eccentric binaries
- Combine events to increase the SNR of subdominant modes [3]
- Enables precision tests of GR and probing the nature of black holes

Credit: Cosmic Explorer Horizon Study

Conclusion

 Ringdown analysis has the ability to probe GR and black holes in the strong-field regime

 The field has begun to progress through the study of NR and real data events

 Ringdown will become more important and more informative into the future

Credit: OpenAl