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Superradiant boson clouds around 
black holes

Direct interaction of particles with the 
detector

Long or long transients signals 
hours to months 

continuous wave (CW) like signals 

~90 orders of magnitude in mass



Ultralight particles interacting 
with the detector



ULDM of spin-0 (scalar), 1 (vector), or 2 (tensors) interacting with the detector optics (mirrors)

Direct interaction with the detectors
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See also: Manita et al., PRD 109, 095012 (2024)
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LVK, Abbott et al., PRD 105, 063030, 2022; Guo et al., Comm. Phys 2, 155 (2019)

Vector bosons (dark photons) strain

• ULDM interacting with GW interferometers (baryons/baryons minus leptons in the materials - 
fused silica). Treated as an oscillatory “classical field”

• The differential strain due to: 

• A spatial gradient → relative acceleration  between the objects due to the different field 
amplitude

• Effect due to the finite light travel time

Morisaki et al. 2021, PRD 103, 051702

Pierce et al. 2018, PRL 121, 061102
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DM signal - CW like signal
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+ Doppler effect (~10-8)
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DM signal - CW like signal
A time-dependent force acting on the test masses. 

Oscillating at the same frequency and phase as the DM field 
(superposition of plane waves)

The coherence time >> detectors separation

We can look for coincidences 
between detectors

Stochastic and narrowband signal

Maxwell-Boltzmann spreading

+ Doppler effect (~10-8)
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Methods and results - LVK, Abbott et al., PRD 105, 063030, 2022

Search on O3 LIGO/Virgo data

• Cross-correlation 

• Excess power (BSD)

No detection → limits on coupling

Miller et al., PRD 103, 103002 (2021)

Pierce et al., PRL121, 061121 (2018)

LVK PRD 105, 063030 (2022) updated in erratum https://
dcc.ligo.org/LIGO-P2300439/public
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Vector DM search in KAGRA
• Vector fields in KAGRA: sapphire test masses 
and fused silica auxiliary optics. 

• Different materials have different responses to 
the vector field (different q/M of the mirrors) 

• The differential strain is enhanced

Michimura et al., PRD102, 102001 (2020);  
Nakatsuka et al. PRD108, 092010 (2022);  

LVK, arXiv:2403.03004
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https://arxiv.org/abs/2403.03004
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Boson clouds
• Ultralight bosonic particles (scalar, vector or tensor fields; QCD axion, axion-like particles) can 

clump around spinning BHs due to superradiance 

• Given a BH with  and a boson particle of , the superradiance instability is 

maximized if the confinement conditions are satisfied  

(MBH, χi) mb
ℏc/mb ∼ 2GMBH/c2

• Astrophysical BHs could match well with boson masses ranging from 10-20 to 10-10 eV

• Potentially observable through their effects on the BH's dynamics and the gravitational 
waves they emit

• The gravitational wave frequency fGW is mainly determined by the boson mass 

• LIGO/Virgo/KAGRA are sensitive to a mass range of 10-14 to 10-11 eV (10-2000 Hz)
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Boson clouds

• We need: boson angular frequency < BH’s outer 
horizon angular frequency for the growth 

• field bosons condensate, occupying the same 
(quantum) state with huge occupation 
numbers 

• This process (~mins-days) subtracts energy 
from the BH momentum -> The BH slows down 

• The superradiance stops (at saturation) and 
the cloud dissipates through GWs (~days-years)

12

wave is scattered off  
a rotating black hole,  
energy and angular momentum are extracted from a BH 
leading to the amplification of these fields.

maximally efficient when

λb ∼ rs

[Picture credit: Ana Sousa Carvalho]



The boson cloud signal

● The BH-boson cloud system resembles the hydrogen 
atom = gravitational atom 

● The strain amplitude decays  as 

● The GW frequency is twice the field frequency  

● A small spin-up due to annihilation is present

fine structure constant

(when self interaction is negligible)

Credit: D’Antonio et al. Phys. Rev. D 98, 103017 (2018)

13We do not consider the effect due to transition levels see Collaviti et al. arXiv:2407.04304

(at 1st order)fGW ≈ 645 Hz ( 10 M⊙

MBH ) ( α
0.1 )

·f ≈ 3 × 10−14 Hz/s ( 10 M⊙

MBH )
2

( α
0.1 )

19

χ2
i

·f ≈ 1 × 10−6 Hz/s ( 10 M⊙

MBH )
2

( α
0.1 )

15

χ2
i

scalar vector

https://arxiv.org/abs/2407.04304


Scalar boson clouds methods and searches (CW-like)
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● First all-sky survey. Frequency 20–610 Hz (O3 LIGO data). Small spin-up range around zero - 
Abbott et al. PRD 105, 102001 (2022) (see also Palomba et al. PRL 123 171101 (2019) - O2 data; Dergachev and Papa PRL 123 
101101 (2019) - O1 data). All-sky semi-coherent method: D'Antonio PRD 98, 103017 (2018);



Scalar boson clouds methods and searches (CW-like)

14

● First all-sky survey. Frequency 20–610 Hz (O3 LIGO data). Small spin-up range around zero - 
Abbott et al. PRD 105, 102001 (2022) (see also Palomba et al. PRL 123 171101 (2019) - O2 data; Dergachev and Papa PRL 123 
101101 (2019) - O1 data). All-sky semi-coherent method: D'Antonio PRD 98, 103017 (2018);

● Ensemble of signals, characterization and impact on CW analyses: Zhu, et al., PRD 102, 063020 
(2020); Pierini, et al., PRD 106, 042009 (2022)



Scalar boson clouds methods and searches (CW-like)
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● First all-sky survey. Frequency 20–610 Hz (O3 LIGO data). Small spin-up range around zero - 
Abbott et al. PRD 105, 102001 (2022) (see also Palomba et al. PRL 123 171101 (2019) - O2 data; Dergachev and Papa PRL 123 
101101 (2019) - O1 data). All-sky semi-coherent method: D'Antonio PRD 98, 103017 (2018);

● Ensemble of signals, characterization and impact on CW analyses: Zhu, et al., PRD 102, 063020 
(2020); Pierini, et al., PRD 106, 042009 (2022)

● Directed:  

✦ targeting the Galactic Center in O3 data: no priors on BH mass, spin or ages - Abbott et al. 
PRD 106, 042003 (2022); semi-coherent method in Piccinni et al., PRD 101, 082004 (2020) 

✦ targeting known galactic BHs: Cygnus X-1 O2 - rely on the mass, spin and age estimates of 
the target - Sun et al. PRD 101, 063020 (2020); Hidden Markov model tracking (directed) Isi 
et al. PRD 99 084042 (2019);



Exclusion regions LVK, PRD 105, 102001 (2022)

D=1 kpc

BH spin = 0.9

assuming a BH with a given 
spin, distance and age 

we exclude some BH-boson 
masses combination

D=15 kpc
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Exclusion regions LVK, PRD 105, 102001 (2022)

D=1 kpc

BH spin = 0.9

assuming a BH with a given 
spin, distance and age 

we exclude some BH-boson 
masses combination

D=15 kpc

 BH spin = 0.5D=15 kpcD=1 kpc
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Astrophysical reach of the search

Simulating a BH population with:

• Kroupa mass distribution [5, 100] M⊙

• uniform spin distribution [0.2, 0.9]. 

maximum distance at which a given BH–boson cloud system, with a certain age, 
is not emitting CWs, as a function of the boson mass

Results depend on the properties of the simulated BH population.

tage>107 yrs 
A similar trend for a simulated BH 
population of [5, 50] M⊙.

16

tage<103 yrs 

LVK, PRD 105, 102001 (2022)
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(other than CW methods)

Other ways to look for BC evidence
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(other than CW methods)

Other ways to look for BC evidence

• Impact of DM on binary dynamics - Baumann et al., PRD99, 044001 (2019); Hannuksela et al. Nature Astron. 3 447 
(2019); Xue, Huang, Sci. China Phys., Mech. & Astro., 67 210411 (2024) 
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(other than CW methods)

Other ways to look for BC evidence

• Impaaaaaaaaaa
aa

• Stochastic background generated by the superposition of all signals from scalar or vector 
boson cloud; Assume BH spin distribution and merger rate - Tsukada et al., PRD 103, 082005 (2021): Vector 
boson clouds (O1+O2); Yuan et al., PRD106, 023020 (2022): Scalar boson clouds (O1+O2+O3)
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Other ways to look for BC evidence

• Impaaaaaaaaaa
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• Stochaaaaaaa
aaaaa
aaaa

• SGWB from tensor boson clouds - Guo et al. Arxiv 2312.16435
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Other ways to look for BC evidence

• Impaaaaaaaaaa
aa

• Stochaaaaaaa
aaaaa
aaaa

• SGWB from tensor boson clouds - Guo et a

• Constraints from BH spin distributions (spin limited by superradiance) - Ng et al., PRL 126, 151102 (2021) 
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(other than CW methods)

Other ways to look for BC evidence

• Impaaaaaaaaaa
aa

• Stochaaaaaaa
aaaaa
aaaa

• SGWB from tensor boson clouds - Guo et a

• Constraaaa

• Effects on the GW waveform due to boson transfer BBH system - Guo et al. 2309.07790
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(other than CW methods)

Other ways to look for BC evidence

• Impaaaaaaaaaa
aa

• Stochaaaaaaa
aaaaa
aaaa

• SGWB from tensor boson clouds - Guo et a

• Constraaaa

• Effaaa

• Checking the rates of hierarchical black hole mergers in nuclear star clusters - Payne et 
al 2022 ApJ 931 79 (2022)
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Conclusion
● Earth-based interferometers can be used to look for DM evidence as a GW signal or as direct 

detectors 

● Searches in GW data are already providing interesting constraints in the ultralight mass range 

● New DA techniques are under development, improving also in the signal modeling 

● There is a wide margin of improvement if we consider second-order effects, different self-
interaction regimes, etc... 

● In the case of detection, it might be difficult to distinguish between sources (e.g. NS or BC?) and 
between signal models (scalar, vector, tensor, self-interaction or not, relativistic regime, ...) 

● We look forward to the upcoming O4 run!
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Backup
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Scalar vs Vector: timescales and h0 

τinst ≈ 2 mins ( MBH

10 M⊙ ) ( 0.1
α )

7 1
χi

Vector bosonsScalar bosons

τinst ≈ 20 days ( MBH

10 M⊙ ) ( 0.1
α )

9 1
χi

τGW ≈ 8 days ( MBH

10 M⊙ ) ( 0.1
α )

11

( 0.5
χi − χf )

h0 ≈ 3 × 10−26 ( M
10 M⊙ ) ( α

0.1 )
5

( 1 Gpc
d ) (χi − χf)

τGW ≈ 105 yr ( MBH

10 M⊙ ) ( 0.1
α )

15

( 0.5
χi − χf )

h0 ≈ 6 × 10−24 ( MBH

10 M⊙ ) ( α
0.1 )

7

( 1 kpc
d ) (χi − χf)

Valid in the non relativistic regime 21



Scalar vs Vector: Frequency
Vector bosonsScalar bosons

fGW ≈ 645 Hz ( 10 M⊙

MBH ) ( α
0.1 )

weak signals that are longer-lived loud signals that are shorter-lived

22

(at 1st order)

·f ≈ 3 × 10−14 Hz/s ( 10 M⊙

MBH )
2

( α
0.1 )
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·f ≈ 1 × 10−6 Hz/s ( 10 M⊙
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( α
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Isi+ PRD 99, 084042 (2019)


