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Outline of talk

The global scattering problem
New non-linear results
New linear results for initial data

Future perspectives

New linear results for evolutions — ask me afterward!



e No background geometry as a reference. The wave is the
geometry!
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To infinity!

e For asymptotically flat space-times, a well defined prescription
exists at infinity.

o These space-times model isolated systems, and their curvature
falls off to zero at infinity.

e This prescription can also be thought of as idealizing local
behaviour.



Asymptotic simplicity

Definition
A smooth (time- and space-orientable) Lorentzian space-time
(M, gap) is called asymptotically simple, if there exists another
smooth Lorentzian space-time (M, g,p) such that
° I\~4~|s an open submanifold of M with smooth boundary
oM = .7,
e there exists a smqvoth scalar field © on M, such that
Zab = ©°g,p on M, and so that © =0, d© # 0 on .7;
e every null geodesic in M acquires a future and a past endpoint
on ..
An asymptotically simple space-time is called asymptotically flat, if
in addition R,, = 0 in a neighbourhood of .7.



From The large scale structure of space-time Hawking and Ellis



The global scattering problem

14 = outgoing radiation

g
1o = ingoing radiation

Set the non-interacting initial data on .# ~ (in-states) and relate to
the non-interacting final data on /™ (out-states).



Work done so far

e Analytical:
» Conformal scattering (Nicolas, Mason, Friedlander, ...).

e Numerical:

» Fully psuedo spectral methods for conformally invariant wave
equation on Minkowski, Schwarzschild or Kerr space-times
(Hennig, Frauendiener, Macedo)

» Evolution of linearised spin-2 equation around Minkowski
space-time (Frauendiener, Doulis)

» No non-linear Einstein equations, no linear Einstein equations
from .~ to .# " has been done.



Conformal Field Equations

e H. Friedrich devised a regular extension of the Einstein
equations to the conformal space-time, The Conformal Field
Equations.

ea(q) — ep(cl) = Fabccff — Fbaccfj,
ea(/r\bcd) - eb(/r\acd) — (/r\abe - /r\bae) /r\ecd - /r\bce/r\aed 4 /r\ace/r\bed
+ ©Kabc! — 27 ﬁb]d + 25[adﬁb]c - 2'B[ab]6cdv
6a'abc - §b'aac — heKabcev

veKabce - 0> [Kabcd — e_ICabcd - e_163bcd]

e This is a first order, non-linear, symmetric hyperbolic system
for the frame components, connection and curvature.
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Success of the numerical IBVP framework
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Step toward global non-linear scattering problem
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Step toward global non-linear scattering problem

loss of hyperbolicity

,\Foss of hyperbolicity
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|(wo)2| BF

|(p1)2| BF * 1E1

|(y2)o| BF

|(w3)2| BF * 1E1

|(wa)2| BF * 1E1

Bondi Energy pert * 1E5
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The vertical dashed line corresponds to future timelike infinity



The global scattering problem — linearised

14 = outgoing radiation

g
1o = ingoing radiation

Set the non-interacting initial data on .# ~ (in-states) and relate to
the non-interacting final data on /™ (out-states).
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The cylinder at spatial infinity

(a) There are pathologies at
spatial infinity (i°).
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(b) These are easier to deal
with if we blow up spatial
infinity from a point to a
cylinder



The linearised equations on .~

e Restricting the system to .# —, we see that 4 of the equations
are intrinsic to .% .

e Using a 'fully-compactified’ gauge that covers the whole
space-time where r = 0 is past timelike infinity and r =1 is
the bottom of the cylinder, and expanding in SWSH, the 4
equations on .~ are

Tak—1

s(2r)

where k =1,2,3,4, ap = \/I(I + 1) — (k — 1)(k — 2),

Ok w3+ (7 - 2K)c(2r))

or 2s(2r) V-1,

Yi +

c(r) = cos (%r) and s(r) = sin (%r)
e Integrating these yields

0k(r) = T2 P22 ([ s Hel) Hue-1d).

20 0



Regularity conditions

e There have existed regularity conditions in the neighbourhood
of i~ and /= separately, but not together:

If 1o = O(r") then ¢, = O(r") also.

,'+
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Regularity conditions

e There have existed regularity conditions in the neighbourhood
of i~ and /= separately, but not together:

If 1o = O((r — 1)") then ¥, = O((r — 1)") also.
+
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Theorem (Barrer, Stevens)

If 1o has compact support (a, b) C (0,1) with fall-off O((1 — r)3)
or greater towards r = 1 (the bottom of the cylinder |~ ), and
(r) =0 for r < a, then vy is finite at r = 0 for all k if and only

[ sin (%) vty =o.

Additionally, (1) = 0 for all k if and only if

/abcot( )sm( >1/10()







Next 30 years?

e A numerical framework that can calculate a large class of
initial data on .#~ and then use it to calculate the entire
resulting asymptotically-flat space-time. This can then be

used to, in a reasonably unambiguous way, simulate local
pieces of our universe.




Evolving the linearized Equations off of .7~

In a semi-compactified gauge around the cylinder at spatial infinity,
we have

(14 t&")0rpo = Kppo — (3K" — p)tho — paathn,

1 1
Orp1 = —pap1 + E,UOQT% - Eﬂa0¢27

1 1
Ortpr = 2H040¢1 = *Ma0¢3,
1 1
Otp3 = s + zuao?ﬁz = *Mazw,

(1 — tr")0shg = —kObg + (3K — p)thg + paihs

These equations are symmetric hyperbolic except for at the Critical
Sets, t = j:%. These intersect the top and bottom of the cylinder.
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Loss of Hyperbolicity

f—l—
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Evolving through [~

Relatively simple, just use an implicit method!

Votl = Yn + dt % f(yns1, t + dt) (3)

This avoids the evaluation at /=, problem solved. However /T is
more difficult.
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Evolving through /"
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Evolving through /™ continued

1

— m(((l + 1) = t)0tha + (2 — r)ha — 2(1 + r)es),

Oripa
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Psi0 convergence at t Psi4 convergence at t = 2.5

log, Error of ¢ log,Error of ¢4






