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Outline of talk

• The global scattering problem

• New non-linear results

• New linear results for initial data

• Future perspectives

• New linear results for evolutions – ask me afterward!
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Gravitational waves are not locally well defined

• No background geometry as a reference. The wave is the
geometry!

Figure: Image by brgfx on Freepik
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To infinity!

• For asymptotically flat space-times, a well defined prescription
exists at infinity.

• These space-times model isolated systems, and their curvature
falls off to zero at infinity.

• This prescription can also be thought of as idealizing local
behaviour.

4



Asymptotic simplicity

Definition
A smooth (time- and space-orientable) Lorentzian space-time
(M̃, g̃ab) is called asymptotically simple, if there exists another
smooth Lorentzian space-time (M, gab) such that

• M̃ is an open submanifold of M with smooth boundary
∂M̃ = I ;

• there exists a smooth scalar field Θ on M, such that
gab = Θ2g̃ab on M̃, and so that Θ = 0, dΘ ̸= 0 on I ;

• every null geodesic in M̃ acquires a future and a past endpoint
on I .

An asymptotically simple space-time is called asymptotically flat, if
in addition R̃ab = 0 in a neighbourhood of I .
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Minkowski space-time (M̃ , g̃) embedded in the
Einstein cylinder (M ,Θ2g̃)

Figure: From The large scale structure of space-time Hawking and Ellis
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The global scattering problem

i0

i+

I +

ψ4 = outgoing radiation

I −

ψ0 = ingoing radiation

r = 0

Set the non-interacting initial data on I − (in-states) and relate to
the non-interacting final data on I+ (out-states).
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Work done so far

• Analytical:
▶ Conformal scattering (Nicolas, Mason, Friedlander, . . . ).

• Numerical:
▶ Fully psuedo spectral methods for conformally invariant wave

equation on Minkowski, Schwarzschild or Kerr space-times
(Hennig, Frauendiener, Macedo)

▶ Evolution of linearised spin-2 equation around Minkowski
space-time (Frauendiener, Doulis)

▶ No non-linear Einstein equations, no linear Einstein equations
from I − to I + has been done.
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Conformal Field Equations

• H. Friedrich devised a regular extension of the Einstein
equations to the conformal space-time, The Conformal Field
Equations.

ea(c
µ
b )− eb(c

µ
a ) = Γ̂ab

ccµc − Γ̂ba
ccµc ,

ea(Γ̂bc
d)− eb(Γ̂ac

d) =
(
Γ̂ab

e − Γ̂ba
e
)
Γ̂ec

d − Γ̂bc
eΓ̂ae

d + Γ̂ac
eΓ̂be

d

+ΘKabc
d − 2ηc[aP̂b]

d + 2δ[a
dP̂b]c − 2P̂[ab]δc

d,

∇̂aP̂bc − ∇̂bP̂ac = heKabc
e ,

∇eKabc
e = 0, [Kabc

d = Θ−1Cabc
d = Θ−1C̃abc

d ]

• This is a first order, non-linear, symmetric hyperbolic system
for the frame components, connection and curvature.
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Success of the numerical IBVP framework

Papers 1 2 3

i0

i+

I +

I −

r = 0

1Frauendiener, J., & Stevens, C. (2021). The non-linear perturbation of a black
hole by gravitational waves. I. The Bondi–Sachs mass loss. Classical and Quantum
Gravity, 38(19), 194002.

2Frauendiener, J. & Stevens, C. (2023). The non-linear perturbation of a black
hole by gravitational waves. II. Quasinormal modes and the compactification problem.
Classical and Quantum Gravity, 40(12), 125006.

3Goodenbour, A, Frauendiener, J. & Stevens, C. (2024). The non-linear
perturbation of a black hole by gravitational waves. III. Newman-Penrose constants.
Classical and Quantum Gravity 41(6), 065005.
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Fully non-linear results for scattering with a black
hole

Figure: From Frauendiener, J. & Stevens, C. (2023). The non-linear
perturbation of a black hole by gravitational waves. II. Quasinormal
modes and the compactification problem. Classical and Quantum
Gravity, 40(12), 125006. 11



Step toward global non-linear scattering problem

i0

i+

I +

I −

r = 0
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Step toward global non-linear scattering problem

i0

i+

I +

I −

r = 0

loss of hyperbolicity

loss of hyperbolicity
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Convergence test on I −

Figure: A constraint from ∇aKabcd = 0 along I −

14



Convergence test on I +

Figure: A constraint from ∇aKabcd = 0 along I +
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Bondi energy and gravitational data on I −
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Bondi energy and gravitational data on I +

Figure: The vertical dashed line corresponds to future timelike infinity
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The global scattering problem – linearised

i0

i+

I +

ψ4 = outgoing radiation

I −

ψ0 = ingoing radiation

r = 0

Set the non-interacting initial data on I − (in-states) and relate to
the non-interacting final data on I+ (out-states).
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The cylinder at spatial infinity

i0

i+

i−

I +

I −

(a) There are pathologies at
spatial infinity (i0).

I−
I
I+

i+

i−

I +

I −

(b) These are easier to deal
with if we blow up spatial
infinity from a point to a
cylinder

19



The linearised equations on I −

• Restricting the system to I −, we see that 4 of the equations
are intrinsic to I −.

• Using a ’fully-compactified’ gauge that covers the whole
space-time where r = 0 is past timelike infinity and r = 1 is
the bottom of the cylinder, and expanding in SWSH, the 4
equations on I − are

∂ψk

∂r
= −π(3 + (7− 2k)c(2r))

2s(2r)
ψk +

πak−1

s(2r)
ψk−1,

where k = 1, 2, 3, 4, ak =
√

l(l + 1)− (k − 1)(k − 2),

c(r) = cos
(πr
2

)
and s(r) = sin

(πr
2

)
.

• Integrating these yields

ψk(r) =
πak
2

s(r)k−5c(r)k−2
(∫ r

0
s(ρ)4−kc(ρ)1−kψk−1dρ

)
.
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Regularity conditions

• There have existed regularity conditions in the neighbourhood
of i− and I− separately, but not together:

If ψ0 = O(rn) then ψk = O(rn) also.

I−
I
I+

i+

i−

I +

I −
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Regularity conditions

• There have existed regularity conditions in the neighbourhood
of i− and I− separately, but not together:

If ψ0 = O((r − 1)n) then ψk = O((r − 1)n) also.

I−
I
I+

i+

i−

I +

I −
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Regularity conditions for all of I −

Theorem (Barrer, Stevens)

If ψ0 has compact support (a, b) ⊆ (0, 1) with fall-off O((1− r)3)
or greater towards r = 1 (the bottom of the cylinder I−), and
ψk(r) = 0 for r ≤ a, then ψk is finite at r = 0 for all k if and only
if ∫ b

a
sin

(πr
2

)3
ψ0(r)dr = 0. (1)

Additionally, ψk(1) = 0 for all k if and only if∫ b

a
cot (πr) sin

(πr
2

)3
ψ0(r) dr = 0. (2)
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Solving for the initial data
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Next 30 years?

• A numerical framework that can calculate a large class of
initial data on I − and then use it to calculate the entire
resulting asymptotically-flat space-time. This can then be
used to, in a reasonably unambiguous way, simulate local
pieces of our universe.
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Evolving the linearized Equations off of I −

In a semi-compactified gauge around the cylinder at spatial infinity,
we have

(1 + tκ′)∂tψ0 = κ∂rψ0 − (3κ′ − µ)ψ0 − µα2ψ1,

∂tψ1 = −µψ1 +
1

2
µα2ψ0 −

1

2
µα0ψ2,

∂tψ2 =
1

2
µα0ψ1 −

1

2
µα0ψ3,

∂tψ3 = µψ3 +
1

2
µα0ψ2 −

1

2
µα2ψ4,

(1− tκ′)∂tψ4 = −κ∂rψ4 + (3κ′ − µ)ψ4 + µα2ψ3

These equations are symmetric hyperbolic except for at the Critical
Sets, t = ± 1

κ′ . These intersect the top and bottom of the cylinder.

26



Loss of Hyperbolicity

I

I +

I −
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Evolving through I−

Relatively simple, just use an implicit method!

yn+1 = yn + dt ∗ f (yn+1, t + dt) (3)

This avoids the evaluation at I−, problem solved. However I+ is
more difficult.
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Evolving through I+

I +

I+
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Evolving through I+ continued

∂rψ4 =
1

r(1 + r)

(
((1 + r)2 − t)∂tψ4 + (2− r)ψ4 − 2(1 + r)ψ4

)
,
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Checks of correctness above the cylinder

(a) log2Error of ϕ0 (b) log2Error of ϕ4
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Contour plots reproducing another solution

(a) ϕ0 (b) ϕ4
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