Gravitational waves: a numerical exploration of the global scattering problem

Merlyn Barrer ² Jörg Frauendiener ¹ Oliver Markwell ²
Chris Stevens ² Sebenele Thwala ²

¹University of Otago, New Zealand ²University of Canterbury, New Zealand

ACGRG, September 2024

Outline of talk

- The global scattering problem
- New non-linear results
- New linear results for initial data
- Future perspectives
- New linear results for evolutions ask me afterward!

Gravitational waves are not locally well defined

• No background geometry as a reference. The wave *is* the geometry!

Figure: Image by brgfx on Freepik

To infinity!

- For asymptotically flat space-times, a well defined prescription exists at *infinity*.
- These space-times model isolated systems, and their curvature falls off to zero at infinity.
- This prescription can also be thought of as idealizing *local* behaviour.

Asymptotic simplicity

Definition

A smooth (time- and space-orientable) Lorentzian space-time $(\widetilde{M},\widetilde{g}_{ab})$ is called asymptotically simple, if there exists another smooth Lorentzian space-time (M,g_{ab}) such that

- \widetilde{M} is an open submanifold of M with smooth boundary $\partial \widetilde{M} = \mathscr{I}$:
- there exists a smooth scalar field Θ on M, such that $g_{ab} = \Theta^2 \widetilde{g}_{ab}$ on \widetilde{M} , and so that $\Theta = 0$, $d\Theta \neq 0$ on \mathscr{I} ;
- every null geodesic in M acquires a future and a past endpoint on \mathscr{I} .

An asymptotically simple space-time is called asymptotically flat, if in addition $\widetilde{R}_{ab} = 0$ in a neighbourhood of \mathscr{I} .

Minkowski space-time (\tilde{M}, \tilde{g}) embedded in the Einstein cylinder $(M, \Theta^2 \tilde{g})$

Figure: From The large scale structure of space-time Hawking and Ellis

The global scattering problem

Set the non-interacting initial data on \mathscr{I}^- (in-states) and relate to the non-interacting final data on I^+ (out-states).

Work done so far

• Analytical:

► Conformal scattering (Nicolas, Mason, Friedlander, ...).

Numerical:

- ► Fully psuedo spectral methods for conformally invariant wave equation on Minkowski, Schwarzschild or Kerr space-times (Hennig, Frauendiener, Macedo)
- ► Evolution of linearised spin-2 equation around Minkowski space-time (Frauendiener, Doulis)
- No non-linear Einstein equations, no linear Einstein equations from \mathscr{I}^- to \mathscr{I}^+ has been done.

Conformal Field Equations

 H. Friedrich devised a regular extension of the Einstein equations to the conformal space-time, The Conformal Field Equations.

 $e_{\mathbf{a}}(c_{\mathbf{b}}^{\mu}) - e_{\mathbf{b}}(c_{\mathbf{a}}^{\mu}) = \widehat{\Gamma}_{\mathbf{a}\mathbf{b}}{}^{\mathbf{c}}c_{\mathbf{a}}^{\mu} - \widehat{\Gamma}_{\mathbf{b}\mathbf{a}}{}^{\mathbf{c}}c_{\mathbf{a}}^{\mu}$

$$\begin{split} e_{\mathbf{a}}(\widehat{\Gamma}_{\mathbf{b}\mathbf{c}}{}^{\mathbf{d}}) - e_{\mathbf{b}}(\widehat{\Gamma}_{\mathbf{a}\mathbf{c}}{}^{\mathbf{d}}) &= \left(\widehat{\Gamma}_{\mathbf{a}\mathbf{b}}{}^{\mathbf{e}} - \widehat{\Gamma}_{\mathbf{b}\mathbf{a}}{}^{\mathbf{e}}\right) \widehat{\Gamma}_{\mathbf{e}\mathbf{c}}{}^{\mathbf{d}} - \widehat{\Gamma}_{\mathbf{b}\mathbf{c}}{}^{\mathbf{e}}\widehat{\Gamma}_{\mathbf{a}\mathbf{e}}{}^{\mathbf{d}} + \widehat{\Gamma}_{\mathbf{a}\mathbf{c}}{}^{\mathbf{e}}\widehat{\Gamma}_{\mathbf{b}\mathbf{e}}{}^{\mathbf{d}} \\ &+ \Theta K_{\mathbf{a}\mathbf{b}\mathbf{c}}{}^{\mathbf{d}} - 2\eta_{\mathbf{c}[\mathbf{a}}\widehat{P}_{\mathbf{b}]}{}^{\mathbf{d}} + 2\delta_{[\mathbf{a}}{}^{\mathbf{d}}\widehat{P}_{\mathbf{b}]\mathbf{c}} - 2\widehat{P}_{[\mathbf{a}\mathbf{b}]}\delta_{\mathbf{c}}{}^{\mathbf{d}}, \\ \widehat{\nabla}_{a}\widehat{P}_{bc} - \widehat{\nabla}_{b}\widehat{P}_{ac} &= h_{e}K_{abc}{}^{\mathbf{e}}, \end{split}$$

 $\nabla_e K_{abc}{}^e = 0, \qquad [K_{abc}{}^d = \Theta^{-1} C_{abc}{}^d = \Theta^{-1} \tilde{C}_{abc}{}^d]$

• This is a first order, non-linear, symmetric hyperbolic system for the frame components, connection and curvature.

Success of the numerical IBVP framework

Papers 1 2 3

¹Frauendiener, J., & Stevens, C. (2021). The non-linear perturbation of a black hole by gravitational waves. I. The Bondi–Sachs mass loss. Classical and Quantum Gravity, 38(19), 194002.

²Frauendiener, J. & Stevens, C. (2023). The non-linear perturbation of a black hole by gravitational waves. II. Quasinormal modes and the compactification problem. Classical and Quantum Gravity, 40(12), 125006.

³Goodenbour, A, Frauendiener, J. & Stevens, C. (2024). The non-linear perturbation of a black hole by gravitational waves. III. Newman-Penrose constants. Classical and Quantum Gravity 41(6), 065005.

Success of the numerical IBVP framework

Papers ^{1 2 3}

¹Frauendiener, J., & Stevens, C. (2021). The non-linear perturbation of a black hole by gravitational waves. I. The Bondi–Sachs mass loss. Classical and Quantum Gravity, 38(19), 194002.

²Frauendiener, J. & Stevens, C. (2023). The non-linear perturbation of a black hole by gravitational waves. II. Quasinormal modes and the compactification problem. Classical and Quantum Gravity, 40(12), 125006.

³Goodenbour, A, Frauendiener, J. & Stevens, C. (2024). The non-linear perturbation of a black hole by gravitational waves. III. Newman-Penrose constants. Classical and Quantum Gravity 41(6), 065005.

Fully non-linear results for scattering with a black hole

Figure: From Frauendiener, J. & Stevens, C. (2023). The non-linear perturbation of a black hole by gravitational waves. II. Quasinormal modes and the compactification problem. Classical and Quantum Gravity, 40(12), 125006.

Step toward global non-linear scattering problem

Step toward global non-linear scattering problem

Convergence test on \mathscr{I}^-

Figure: A constraint from $\nabla^a K_{abcd} = 0$ along \mathscr{I}^-

Convergence test on \mathscr{I}^+

Figure: A constraint from $\nabla^a K_{abcd} = 0$ along \mathscr{I}^+

Bondi energy and gravitational data on \mathscr{I}^-

Bondi energy and gravitational data on \mathscr{I}^+

Figure: The vertical dashed line corresponds to future timelike infinity

The global scattering problem – linearised

Set the non-interacting initial data on \mathscr{I}^- (in-states) and relate to the non-interacting final data on I^+ (out-states).

The cylinder at spatial infinity

(a) There are pathologies at spatial infinity (i^0) .

(b) These are easier to deal with if we blow up spatial infinity from a point to a cylinder

The linearised equations on \mathscr{I}^-

- Restricting the system to \mathscr{I}^- , we see that 4 of the equations are intrinsic to \mathscr{I}^- .
- Using a 'fully-compactified' gauge that covers the whole space-time where r=0 is past timelike infinity and r=1 is the bottom of the cylinder, and expanding in SWSH, the 4 equations on \mathscr{I}^- are

$$\frac{\partial \psi_k}{\partial r} = -\frac{\pi(3 + (7 - 2k)c(2r))}{2s(2r)} \psi_k + \frac{\pi a_{k-1}}{s(2r)} \psi_{k-1},$$
where $k = 1, 2, 3, 4$, $a_k = \sqrt{I(I+1) - (k-1)(k-2)}$,

Integrating these yields

$$\psi_k(r) = \frac{\pi a_k}{2} s(r)^{k-5} c(r)^{k-2} \left(\int_0^r s(\rho)^{4-k} c(\rho)^{1-k} \psi_{k-1} d\rho \right)$$

Regularity conditions

 There have existed regularity conditions in the neighbourhood of i⁻ and I⁻ separately, but not together:

If
$$\psi_0 = O(r^n)$$
 then $\psi_k = O(r^n)$ also.

Regularity conditions

 There have existed regularity conditions in the neighbourhood of i⁻ and I⁻ separately, but not together:

If
$$\psi_0 = O((r-1)^n)$$
 then $\psi_k = O((r-1)^n)$ also.

Regularity conditions for all of \mathscr{I}^-

Theorem (Barrer, Stevens)

If ψ_0 has compact support $(a,b)\subseteq (0,1)$ with fall-off $\mathcal{O}((1-r)^3)$ or greater towards r=1 (the bottom of the cylinder I^-), and $\psi_k(r)=0$ for $r\leq a$, then ψ_k is finite at r=0 for all k if and only if

$$\int_{a}^{b} \sin\left(\frac{\pi r}{2}\right)^{3} \psi_{0}(r) dr = 0.$$
 (1)

Additionally, $\psi_k(1) = 0$ for all k if and only if

$$\int_{a}^{b} \cot(\pi r) \sin\left(\frac{\pi r}{2}\right)^{3} \psi_{0}(r) dr = 0.$$
 (2)

Solving for the initial data

Next 30 years?

 A numerical framework that can calculate a large class of initial data on \$\mathcal{I}^-\$ and then use it to calculate the entire resulting asymptotically-flat space-time. This can then be used to, in a reasonably unambiguous way, simulate local pieces of our universe.

Evolving the linearized Equations off of \mathscr{I}^-

In a semi-compactified gauge around the cylinder at spatial infinity, we have

$$(1 + t\kappa')\partial_{t}\psi_{0} = \kappa\partial_{r}\psi_{0} - (3\kappa' - \mu)\psi_{0} - \mu\alpha_{2}\psi_{1},$$

$$\partial_{t}\psi_{1} = -\mu\psi_{1} + \frac{1}{2}\mu\alpha_{2}\psi_{0} - \frac{1}{2}\mu\alpha_{0}\psi_{2},$$

$$\partial_{t}\psi_{2} = \frac{1}{2}\mu\alpha_{0}\psi_{1} - \frac{1}{2}\mu\alpha_{0}\psi_{3},$$

$$\partial_{t}\psi_{3} = \mu\psi_{3} + \frac{1}{2}\mu\alpha_{0}\psi_{2} - \frac{1}{2}\mu\alpha_{2}\psi_{4},$$

$$(1 - t\kappa')\partial_{t}\psi_{4} = -\kappa\partial_{r}\psi_{4} + (3\kappa' - \mu)\psi_{4} + \mu\alpha_{2}\psi_{3}$$

These equations are symmetric hyperbolic except for at the *Critical Sets*, $t=\pm\frac{1}{\kappa'}$. These intersect the top and bottom of the cylinder.

Loss of Hyperbolicity

Evolving through *I*⁻

Relatively simple, just use an implicit method!

$$y_{n+1} = y_n + dt * f(y_{n+1}, t + dt)$$
 (3)

This avoids the evaluation at I^- , problem solved. However I^+ is more difficult.

Evolving through I+

Evolving through I^+ continued

$$\partial_r \psi_4 = \frac{1}{r(1+r)} \big(((1+r)^2 - t) \partial_t \psi_4 + (2-r) \psi_4 - 2(1+r) \psi_4 \big),$$

Checks of correctness above the cylinder

(a) $\log_2 \text{Error of } \phi_0$

(b) $\log_2 \text{Error of } \phi_4$

Contour plots reproducing another solution

